If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-13.9t-13.9=0
a = 1; b = -13.9; c = -13.9;
Δ = b2-4ac
Δ = -13.92-4·1·(-13.9)
Δ = 248.81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13.9)-\sqrt{248.81}}{2*1}=\frac{13.9-\sqrt{248.81}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13.9)+\sqrt{248.81}}{2*1}=\frac{13.9+\sqrt{248.81}}{2} $
| |x|=17 | | -5x+8=4x-1 | | 293x-4)+5(2x+30=-9 | | 3(-2)-1.2y=1.2 | | 13.25=2g+3.51 | | 1.25t^2-11.11t-11.11=0 | | 21=4e | | 3x+53+7x-55=180 | | 195=90+(15+7)w | | -6(f+7)=-4f-2 | | t^2-9.25t-9.25=0 | | 2a-12=3{a-6} | | 2(-4x-13)=30+6x+7x+7 | | 2-16f=6(-3f+2) | | (-8x+12)=6+-6x | | -x+13=16 | | 11(2+4x)=14 | | -x+6=5x+30 | | 4=x/4-6 | | C=8.50p+5.50 | | 3+x=-14x | | 14-x=10. | | u/5-11=27 | | 3x(x-1)(x^2-81)=0 | | 3x(x-1)(x^2-81)=03x(x−1)(x2−81)=0 | | 1=2v-13 | | 4x+24=x-15 | | |3x-4=8| | | 2x/x^2-16=8/x^2-16-3/x+4 | | -11=-7w+4(w+4) | | 8x+28=x-14 | | 8x-49=x+7 |